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Rayleigh wave dispersion curves and refraction travel times are jointly inverted through a procedure based
on a Multi-Objective Evolutionary Algorithm (MOEA) technique. The proposed procedure aims at improving
the reconstruction of subsurface structure by exploiting the complementary information attainable by
refraction seismics and surface-wave dispersion and by overcoming in this way the problems related to non-
uniqueness of the solution (surface waves and refraction seismics) and hidden layers (refraction).

The proposed scheme allows the joint inversion of the data and the validation of the provisional
interpretation. In fact, Pareto front symmetry proves to be a valuable tool to verify the coherency of the
adopted interpretation as an incorrect number of layers, refractor attribution or assumed Poisson values
reflect in non-symmetric Pareto front as well as in wider model distribution in the objective space.
Methodology is initially tested using synthetic data and successfully applied to a field dataset resulting
from a single standard seismic survey with vertical geophones and vertically-incident seismic source
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1. Introduction

Surface wave dispersion has been used for crustal studies since the
50s (e.g. Evison et al, 1959) and, more recently, for near-surface
seismic characterization (Stokoe et al., 1988; Glangeaud et al., 1999;
Park et al., 1999; Xia et al., 1999; Louie, 2001; Dal Moro et al., 2007).

Among the several appealing characteristics of the methods based
on Surface Wave (SW) analysis we can recall:

- the high amplitude that make them suitable for noisy (e.g. urban)
areas;

- the minor attenuation with respect to body waves;

- the easy generation: a large fraction of the energy produced by
standard vertically-incident seismic sources actually propagates
as SW;

- the little interpretative effort (with respect to reflection and
refraction surveys);

- the absence of the blind-zone problem, unlike refraction seismics;

- the final result is the vertical shear-wave profile (crucial for
several engineering applications)

On the other hand, the main problem is related to the highly multi-
modal (i.e. non-uniqueness) nature of the dispersion curve inversion
that mirrors in the need for a careful evaluation of the final results (e.g.
Luke et al.,, 2003).
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Fig. 1 shows the vertical Vs profiles and dispersion curves of six
models. Dispersion curves are plotted over the velocity spectrum of
a field dataset obtained from a site characterized by an 18 m
unconsolidated sequence laying over a hard bedrock. At a depth of
15 m velocities range from about 290 to 550 m/s while at 30 m
from 400 up to 2000 m/s (Fig. 1a). Related dispersion curves
(Fig. 1b) are nevertheless extremely similar in the 5-17 Hz range
and give a clear evidence of the so-called non-uniqueness of the
solution.

In addition, velocity spectrum evaluation must be performed by
carefully considering possible artefacts or misleading features such for
instance misinterpreted modes (Zhang and Chan, 2003) or guided
waves, reflections etc. (Robertsson et al., 1995; Roth and Holliger,
1999; Dal Moro et al., 2006).

On the other hand, also refraction studies suffer from two
problems: the hidden layer (also referred to as “blind zone”) (e.g.
Soske, 1959) and the non-uniqueness of the solution (Ivanov et al.,
2005a,b).

Furthermore as small variations of the picked travel times can
result, especially for refractions from high-velocity layers, in large
differences in the retrieved models, data interpretation is an error-
prone task subject to personal (mis)interpretations of the
interpreter.

In order to tackle these problems in an integrated perspective
Ivanov et al. (2006) proposed to use a model retrieved from Rayleigh-
wave analysis as reference model to invert refraction travel times.

Multi-Objective Evolutionary Algorithms (MOEASs) offer a tool for a
joint inversion of multi-datasets and, to some extent, provide a series
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Fig. 1. (a) A series of vertical shear-wave profiles and (b) their dispersion curves in the 5-17 Hz frequency range. In the background an observed velocity spectrum for a site

characterized by an 18 m unconsolidated-sediment sequence laying over a hard bedrock.

of ancillary information able to give the user the opportunity to assess
whether the provisional interpretation is appropriate or not.

In fact, if the preliminary data interpretation is not correct (e.g.
erroneous interpretation of reflectors/refractions with respect to the
chosen subsurface model) incongruities arise from the optimization
procedure and give the user the chance to realize the problem (Dal
Moro and Pipan, 2007).

In other words, the proposed scheme allows the evaluation of the
consistency of the inversion itself (i.e. the inherent provisional data
interpretation).

As a matter of fact, the present study represents a follow-up of a
previously-published work (Dal Moro and Pipan, 2007) in which the
authors explored the potential of bi-objective evolutionary algorithms
for the joint inversion of SH-wave reflection travel times and Rayleigh
wave dispersion curves.

In the present paper the methodology proposed in Dal Moro and
Pipan (2007) for Rayleigh waves and SH-wave reflection travel times is
applied to jointly invert dispersion curves and refraction travel times.

The idea of jointly inverting surface waves and refraction travel
times was suggested by the fact that good reflections are not a
common feature in vertical-component geophone surveys - Dal Moro
and Pipan (2007) considered SH-wave datasets — while refractions are
definitely more-easily detected. On the other side refraction surveys
pose serious interpretative problems related to first-break interpreta-
tions, hidden layers (low-velocity channels) and non-uniqueness and

A
S
o
o
A
.'!._..,-

B A -

f obj#1

utopia point [0, 0]

Fig. 2. Objective space for a typical bi-objective problem. Crosses represent the Pareto
front models.

could highly benefit from the integration of auxiliary data such as
surface waves.

Consequently, the perspective of the present study is the one we
normally assume when performing a standard P-wave survey
(vertical-component geophones) in which refraction event(s) and
ground roll are usually very clear.

The, so to speak, handicap that must be faced is represented by the
fact that ground roll is mainly related to shear-wave velocity (Xia et al.,
1999) while refracted waves just to acoustic-wave velocity. Thickness
of the layers is a decisive parameter for both the events.

As a consequence, a proper strategy is required to reasonably
handle and invert the dataset. If the inversion procedure is properly
designed, it is possible to estimate Poisson moduli and overcome the
mentioned problems of non-uniqueness and blind zone.

For the sake of brevity, in the present paper we will not review the
entire theoretical background of MOEA. Only the major facts will be
briefly recalled while in order to gain a deeper insight into the
methodology and the paradigms to adopt to evaluate the results the
reader can refer to Dal Moro and Pipan (2007).

2. Methodology

Soft computing techniques represent a way to approach data
analysis and optimization by means of fuzzy and approximate
methods that are particularly suitable for highly-complex problems
whose solution cannot be sought via common analytical approaches
(Wong et al., 2002).

Most of such methods (e.g. tabu search, evolutionary algorithms,
ant colony search, simulated annealing etc.) are largely based on
random processes driven towards an optimal solution. The way the
optimization is obtained characterizes each specific method. In
genetic (or evolutionary) algorithms (GAs or EAs) such optimization

G (Poisson)

Fig. 3. Informal graphical representation of the structure of the present MOP.
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Table 1
Parameters of the synthetic model adopted for the tests: Vs and Vp the shear- and
compressional-wave velocities, p the density and THK the thickness

Vp (m/s) Vs (m/s) THK (m) Poisson p (g/cm?)
Layer 1 700 285 3 0.4 1.97
2 400 163 2 0.4 1.83
3 1470 600 10 0.4 215
4 2300 1328 half-space 0.25 2.26

is performed along several steps (defined generations) through the
application of three operations: selection, crossover and mutation (e.g.
Goldberg, 1989; Man et al., 2001).

Among the several relevant aspects characterizing GAs we must
mention the fact that they are much less prone to local-minimum
failure than the traditional gradient-based methods.

In other words, if the function we are considering has several local
minima, gradient-based methods will furnish a final solution
depending on the adopted starting model that will be necessarily
attracted towards the nearest minimum.

On the other side, heuristic methods do not require any starting
model and explore a user-defined search space seeking for the
global minimum. In case of very complex problems involving
several variables and minima, the computational load becomes
massive and optimal solution cannot be guaranteed. In such
conditions particular strategies should be adopted and final
solutions evaluated via statistical tools (Gerstoft and Mecklen-
brauker, 1998; Dal Moro et al., 2007).

To properly handle the non-commensurable nature of the two
objectives considered for the present study (surface waves dispersion
curves and refraction travel times) the same approach adopted in Dal
Moro and Pipan (2007) was considered. A bi-objective system based
on the Pareto front determination was set up in the framework of a GA
scheme (Fonseca and Fleming, 1993, Van Veldhuizen and Lamont,
1998a,b, 2000; Coello Coello 2002, 2003; Dal Moro and Pipan, 2007). A
vector U = (uy,Uy,..., 1) is said to dominate V' = (v1,v,,...,v;) ifand only
if is partially less than v, that is:

vie{l, ...k}, u; < AJie{l, ... k} : u<v; (1)

where k represents the number of considered objective functions.
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A solution x=() (the decision variable space) is said to be Pareto
optimal with respect to the universe ) if and only if there is no x’ €Q
for which ¥'= F(x’) dominates o = F(x').

For a given MOP (Multi Objective Problem) the ensemble of
undominated solutions defines the optimal Pareto set P while the
Pareto Front PF is then defined as
PF := {'=F(X) = (fi (%), ....fi(X)) <P} b))

For non-highly conflicting objectives the typical distribution of
models in the objective space is reported in Fig. 2.

The distribution of the models depends on the relationships
between the two objectives and can be used to evaluate the
provisional data interpretation adopted to invert the data (Dal
Moro and Pipan, 2007). In the present case the interpretative
aspects are the adopted number of strata. assumed Poisson values
and the identification of the refractor a given set of travel times is
attributed to.

As we will show in the following paragraphs, in case of errors in
the provisional interpretation the model distribution in the
objective space is actually deformed from the “normal” distribution
represented in Fig. 2. Such anomalous distributions is adopted as a
warning indicator of erroneous data interpretation (see Dal Moro
and Pipan, 2007).

We considered the Pareto dominance criterion in the frame-
work of an optimization scheme based on an evolutionary
algorithm: a ranking process can be adopted in order to identify
the fittest models and proceed with the optimization procedure
through the application of the genetic operations of selection
crossover and mutation.

In the proposed procedure the rank of a given model is defined on
the basis of the number of models that are dominated by it. Genetic
procedures are then performed on the individuals (i.e. the models)
characterized by the best ranks. Such operations are performed for a
number of times (the generations) specified by the user (for details see
Dal Moro and Pipan, 2007).

3. Objective functions and strategy
The two considered objective functions were defined similarly to

the ones adopted in Dal Moro and Pipan (2007). The root-mean-square
(rms) misfit between the observed and calculated dispersion curves
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Fig. 4. Synthetic model (see Table 1): (a) travel times of the indicated horizons (due to the velocity inversion the first interface does not generate any refraction event) and (b)

dispersion curve.
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Table 2

Genetic parameters adopted for the performed inversions
Population size 100
Crossover rate 0.7
Mutation rate 0.1
Number of generations 300

Crossover type Intermediate recombination
Selection type Roulette wheel selection
Selection pressure 1.2

(first objective, hereafter obj#1) and refraction travel times (second
objective, hereafter obj#2) are defined according to the following
expression:

i=1

(d’obsi _/cal, ) ’

n

where @ represents the Rayleigh-wave phase velocities (obj#1) or the
refraction travel times (obj#2) and n is the number of points for the
given objective.

As far as obj#1 (dispersion curve misfit) is concerned, the ith misfit
(referring to the f; frequency) is multiplied by a factor w; calculated as:

A
fu

w; =

4)

where fy represents the maximum frequency of the considered
dispersion curve.

Such a weighting factor is introduced in order to avoid that the
higher misfits occurring at the lower frequencies would dominate
over the smaller misfits of the higher frequencies (thus possibly
determining a loss of resolution for the shallowest layers)

As previously mentioned, the nature of the considered objectives
represents a critical and challenging factor for the solution of the
system. It is well-known that Rayleigh wave dispersion (obj#1) is
mainly a function of shear-wave velocity Vs and thickness THK, while
density p and Vp play a minor role (Xia et al., 1999).

On the other side, obj#2 depends purely on Vp and THK. This
determines a problem whose solution is definitely trickier than the
case faced by Dal Moro and Pipan (2007) for the joint inversion of
Rayleigh waves and S-wave reflection travel times. In the previous
case Vp plays a definitely-minor role while in the present one the Vp/
Vs ratio represents a critical aspect, since the two objectives depend on
different-but-related velocities. Thickness THK is a common variable
while the link between Vs and V5 is clearly represented by the Poisson
values (Fig. 3).

The optimization algorithm must then be able to properly perform
the search through a reasonable and congruent strategy.

After a number of tests, it was decided to link Vp and Vs by means
of a user-defined sequence of Poisson ratios o (a value for each layer)
fixed together with an uncertainty value (u). In this way, a range of
Poisson values [0o-p(o) o+p(o)] is allowed for each layer. Such
relationships are considered both in the generation of the initial

Table 3

Search space for case #1 (erroneous interpretation). Density was fixed according to
equation (6). Search space limits for Vp are determined according to the fixed Poisson
values (and their uncertainty)

Vs (m/s) Poisson (+10%) THK (m)
Layer 1 200+450 0.4 4+10
450+1000 0.4 6+14
3 1000+2000 0.25 half-space

Table 4
Search space for case#2 (correct travel time interpretation). Density was fixed according
to Eq. (6)

Vs (m/s) Poisson (+10%) THK (m)
Layer 1 200+400 0.4 1+5
2 80+300 0.4 1+5
3 300+900 0.4 5+15
4 900+1800 0.25 half-space

random models both in the crossover and mutation operations that
occur in the successive generations.

The individuals (i.e. the models) originated by these two opera-
tions are checked to detect anomalous Poisson ratios. If o exceeds the
imposed limits, we consider Vs the leading parameter and adjust Vp
on the basis of a Poisson value randomly generated within the
imposed limits:

V1-o
Vp = Vs <—1/2__0> (©)

It is noteworthy to remember that because of the nature of the
involved equations a 5% change in the Poisson value produces a
correspondent Vp change of about 10%.

The classical Gardner's et al. (1974) empirical Vp-p relationship is
adopted to fix the density values:

o= log(0423 + (kvp)"-zs) (6)

where k=1/0.3048 is a constant to convert feet into meters.

It must be underlined that dispersion curves do not give any
information about the number of layers while refraction travel times
in principle could, even though Ivanov et al. (2005a,b) put in evidence
non-uniqueness problems in refraction seismics as well.

Direct wave and Vg at the higher frequencies (of the dispersion
curve) can be used to determine P- and S-wave velocities of the
uppermost layer.

Similarly to the approach followed in Dal Moro et al. (2007) and
Dal Moro and Pipan (2007), we defined a mean model based on the
Marginal Posterior Probability Density (MPPD).

Actually, MOPs characteristically do not have a single solution but
rather a set of solutions (the optimal Pareto set) that, for practical uses,
can be averaged in order to obtain a single mean model.

4. Joint inversions

The results of some tests performed on a synthetic dataset (Table 1
and Fig. 4) are initially presented and furnish some conceptual
schemes useful to discuss the results obtained for a real case
successively reported.

We performed data inversions by considering the genetic para-
meters reported in Table 2 and the constrains and search space
summarized in Tables 3 and 4 for the synthetic case and Table 6 for the
field dataset.

4.1. Synthetic dataset

In order to test the methodology and evaluate its performances we
considered the 4-layer synthetic model reported in Table 1 and Fig. 4.

The adopted model was designed in order to reproduce a typical
hidden-layer case which is clearly prone to erroneous refraction travel
time interpretation.

Clearly, as the first interface does not produce any refraction due to
the velocity inversion, refraction travel times actually due to the
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Fig. 5. Synthetic dataset (case #1): bi-objective inversion when a 3-layer model is adopted (see Table 3): a) model distribution in the objective space (Pareto front models highlighted
by circles within the rectangle), b) Pareto front length, c) and d) observed and calculated data (dispersion curve and refraction travel time).

second and third interfaces risk to be misinterpreted thus leading to
erroneous vertical-profile reconstruction (Fig. 4a).

In order to investigate this scenario we performed two inversions
while assuming two different data interpretations. For the first inversion
we intentionally assumed an erroneous 3-layer structure (case #1) for
which the first and second interfaces were responsible for refraction
travel times actually belonging to the second and third horizons.

The second inversion (case #2) is based on a correct assumption
(4-layer model) and assumes the possible presence of a hidden layer.

4.1.1. Case #1: Erroneous travel time interpretation

An erroneous structure (2 layers on a half space) can be easily
derived from the two observed refractions (Fig. 4a). The observed
travel times would lead to a structure characterized by Vp,=1470,
Vp3=2300 m/s (actually pertinent to the third and forth layers) and
layer thickness of about 7 and 10 m.

Reasonable Poisson values could then be used to define plausible
shear-wave velocities necessary to define a search space to adopt for
the inversion (used to optimize the final solution). Direct wave can be
used to constrain the first-layer velocity. The resulting search space is
summarized in Table 3.

Main outputs of the performed inversion are reported in Fig. 5.
Pareto front length is calculated as the sum of the distances between
adjacent Pareto front models (see also Dal Moro and Pipan, 2007).

The asymmetry of the Pareto front gives clear indication of the
interpretative error, as explained in detail by Dal Moro and Pipan
(2007). The nature of the objective functions clearly indicates that the
error is connected to the wrong assumption in refractor identification.
Due to the severe non-uniqueness of the dispersion curve inversion
obj #1 is actually quite fault tolerant while obj #2 will spread along a
wider range of values in case of errors, being unable to converge
towards a stable solution.

As a consequence, the asymmetry observed for all the tests
performed by erroneously varying number of layers, refractor
attribution and/or assumed Poisson values is similar to the one
reported in Fig. 5a.

4.1.2. Case #2: Correct travel times interpretation

A further inversion was performed according to a proper data
interpretation and a 4-layer structure, based on the hypothesis of a
hidden layer (see parameters reported in Table 2). Refraction travel
times were properly attributed to the second and third horizon and
the inversion was performed according to the search space reported in
Table 4. Results are shown in Fig. 6 and final mean models reported in
Table 5.

The evolution of the Pareto front is different from the trend
observed for the joint inversion of Rayleigh wave dispersion curves
and SH-wave reflection travel times (Dal Moro and Pipan, 2007). In the
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present case, even though the absolute values are smaller when the
proper data interpretation is considered (compare Figs. 5b and 6b), the
evolution of the Pareto front length (and the objective functions) over
the generations do not show any clear decreasing trend that could
serve as indicator of a proper preliminary data interpretation — see
Figs. 5b and 6b and compare with the results presented in Dal Moro
and Pipan (2007).

Nevertheless, model distribution in the bi-objective space and
Pareto front symmetry give clear evidence that the solution is
correct (see also Dal Moro and Pipan, 2007). The symmetric

Table 5
Mean models obtained from the erroneous (case #1) and correct (case #2)
interpretations (see for comparison the synthetic model summarized in Table 1)

Case Vp (m/s) Vs (m/s) THK (m) Poisson

#1 (erroneous) 626 247 7.0 0.408
1791 882 103 0.340
2340 1345 half-space 0.253

#2 (correct) 661 270 3.0 0.399
527 214 3.0 0.401
1611 661 9.6 0.399
2304 1332 half-space 0.249

distribution of the Pareto front models and the smaller scattering
of the entire model population can therefore be considered as a
robust criterion to evaluate the reliability of the obtained solution
and the coherency of the provisional data interpretation (compare
Figs. 5a and 6a).

4.2. Field dataset

The proposed procedure was then used to invert a field dataset
from a sandy beach in NE-Italy. Fig. 7 reports the main acquisition
parameters, the considered P-wave common-shot gather with a close-
up on the first arrivals and the calculated velocity spectrum.

A preliminary evaluation of the data would give evidence of two
refractors and a simple 3-layer model (2 layers on half-space) would
be then potentially adequate to explain the observed data.

In Fig. 8 the observed velocity spectrum is reported together with
the theoretical dispersion curve for a 3-layer model characterized by
Vs equal to 87, 335 and 1014 m/s and thicknesses of 3.5 and 4 m (last
layer is a half-space).

Such data, together with the P-wave velocities obtained from the
two observed refraction events (Vp approximately equal to 1400 and
2500 m/s), correspond to Poisson values of 0.47 and 0.40 for the
second and third layers respectively.
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From these initial considerations a number of inversions based on
a 3-layer model and with various Poisson values were performed.

The asymmetric distribution of the Pareto front models obtained
for all the performed inversions (for the sake of brevity we will not
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Fig. 8. Observed velocity spectrum and dispersion curve for a 3-layer model (Vs=87,335
and 1014 m/s and THK=3.5 and 4 m).

present the results of all the performed inversion but a representative
example is reported in Fig. 9) gives evidence of a fundamentally-
incorrect provisional interpretation.

A further set of possible interpretative hypotheses were then
tested in order to identify a good (i.e. symmetrical) distribution of the
Pareto front models (evidence of a proper interpretative hypothesis).

We decided to adopt a 4-layer model with the two refractions
attributed to the two deepest interfaces.

A major problem was the determination of the Poisson ratios to
adopt as the results of several inversions performed with dif-
ferent values proved that the procedure is quite sensitive to such
parameter. As also the synthetic tests put in evidence, erroneous
Poisson values determine Vp values that cannot produce the correct
(observed) travel times. This fact generates an asymmetric distribu-
tion of the Pareto front models similar to the ones reported in Figs. 5a
and 9a, being the amount of asymmetry somehow proportional to
the error.

The results obtained while attributing the Poisson value sequence
{0.48, 0.47, 0.46, 0.26} (from top to bottom), with +4% of allowed
tolerance (see Table 6) are reported in Fig. 10. Model distribution,
Pareto front symmetry, observed and calculated dispersion curves and
refraction travel times (compare Figs. 9 and 10) altogether demon-
strate a good and coherent provisional interpretation (retrieved mean
model is summarized in Table 6). The limited Pareto front spread is
easily explained by a small amount of noise or minor lateral variations
(see also Dal Moro and Pipan, 2007).
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From the evaluation of the velocities and Poisson ratio values of the
retrieved model (Table 7) we can infer that the first two layers are
sands that very likely differ in grain size, pressure and water content
(see Prasad, 2002 and Zimmer et al., 2002) while the third one is very
likely to be made up of water-sutured gravels. The underlying half-
space clearly exhibits characteristics of hard rock.

5. Conclusions

Any sort of data is able to cast light only onto a specific aspect of the
investigated problem. The implementation of a joint inversion scheme
is meant to proficiently integrate the information that can be
extracted from one dataset with those coming from another one. If
the two objectives depend upon the same variables we can obtain a
better-focused solution, while if the two objectives pertain (even just

Table 6

Interpretative hypothesis and search space considered for the bi-objective inversion
reported in Fig. 10 (the two retraction travel times are attributed to the two deepest
interfaces)

partially) to different variables thus their joint use can lead to new
considerations characterized by a higher so-to-speak added value.

In this study we analysed ground roll and refracted waves, which
are the most evident events in common-shot gathers obtained from
standard vertical-geophone surveys.

Ground roll allows the determination of the Rayleigh wave
dispersion curve while first breaks the compilation of the time-
distance curves for direct/refracted waves.

Such information can lead to infer three fundamental parameters:
shear-wave velocity, which is the most influential parameter in Rayleigh
wave dispersion; compressional wave velocity, which affects the first
arrivals of refracted waves; layer thickness, which is a crucial parameter
for both events (surface-wave propagation and refracted P-waves).

Two points are nevertheless relevant, one pertaining to the
refraction travel times the other one to the dispersion curve.

As well known, in spite of the extensive use of refraction travel
times in applied studies aimed at defining subsurface discontinuities,
first breaks are often hard to read and some interpretive hypothesis is
always necessarily adopted. Results of refraction data interpretation
are therefore prone to failures.

On the other hand, dispersion curve inversion suffers from severe
non-uniqueness (which actually affects refraction as well), i.e.

Poisson Search space
(£4%) Vs (m/s) THK (m)
Layer 1 048 80+120 0.5+3
2 0.47 40+100 1+3.5
3 0.46 100+600 4+10
4 0.26 1200+1700 half-space

different models are compatible with a given dispersion curve.

The consequence is that retrieving a model from refraction travel
times or dispersion curves alone is often risky and/or can provide
wrong or approximate models.

The proposed joint inversion scheme is based on a bi-objective
evolutionary algorithm which exploits the Pareto criterion (Dal Moro
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Fig.10. Results of the bi-objective inversion accomplished while considering the 4-layer interpretative hypothesis summarized in Table 6. (a) model distribution in the objective space
(Pareto front models highlighted by circles within the rectangle), (b) and (c) observed and calculated dispersion curves and refraction travel times.

and Pipan, 2007). The methodology allows the determination of the
vertical velocity profiles (shear and compressional waves) and Poisson
ratio as a by-product.

In the presented procedure, Poisson ratios are fixed by the user
(together with a percentage of tolerance) and the results are then
eventually able to confirm or discharge the adopted hypotheses. In
case Poisson values are excessively far from the true ones, the
resulting Pareto front models appears asymmetric (with respect to the
rest of the model distribution — see e.g. Figs. 5 and 9) and different
values should be adopted and tested.

The problem is particularly tricky because the optimization
procedure is quite sensitive and even small errors of the initially-
assumed Poisson values (to be successively tuned by the inversion
procedure) can determine serious effects in the final results.

As a consequence, especially when dealing with field datasets
(necessarily including a variable amount of noise), joint inversion can
be hard to parameterize but, on the other hand, final results appear to
be quite robust.

Symmetric distribution of the Pareto front models gives evidence
of a proper interpretative hypothesis while asymmetry is caused by
unbalanced Vp-Vs and/or geometrical relationships due to erroneous
interpretation (number of layers, refractor attribution, assumed
Poisson values).

Some points regarding the evaluation of the Pareto front models
should be underlined. In MOPs (Multi-Objective Problems) the final
solution is not a single model but a set of "Pareto Optimal Models"
(POMs) which are perfectly equivalent in terms of "goodness" (of course

for practical use it is possible to summarize final POMs in a single mean
model). Among the POMs it is not possible to determine a model “fitter”
than the others. They all together represent the best set of solutions for
the given problem (see Fonseca and Fleming, 1993; Van Veldhuizen and
Lamont, 1998a,b, 2000; Coello Coello 2002, 2003).

The good misfit of the dispersion curves both in case of proper or
wrong interpretation (compare case #1 and case #2) is a clear
evidence of the well-known problem of non-uniqueness in disper-
sion curve inversion (different models can be equivalent in terms of
surface wave dispersion curves). This is why special attention should
be paid when dealing with studies carried out using surface wave
analysis only.

A crucial point of the present work is that Pareto front symmetry
gives the opportunity to estimate whether the provisional inter-
pretative hypothesis [i.e. number of layers, Poisson values, allowed (or
not) presence of a low-velocity layer, refraction attribution to a certain
horizon| is appropriate or not.

Table 7
Mean model obtained from the inversion presented in Fig. 10 and Table 6
Vp (m/s) Vs (m/s) THK (m) Poisson
Layer 1 1124 90 17 0.497
2 376 82 1.8 0.475
3 1597 453 6.4 0.456
4 2385 1357 half-space 0.261
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The determination of the Pareto front symmetry (which is
evaluated with respect to the totality of the models in the objective
space and consequently does not depend on the adopted units of
measurements) is then a kind of coherency test: once we eventually
determine the final set of POMs we have the chance to evaluate their
consistency with respect to the observed data by evaluating the Pareto
front symmetry.

A synthetic case including a hidden layer was initially considered
in order to assess the performances of the algorithm in challenging
conditions, i.e. where one of the two methods (refraction analysis) is
bound to fail. A field dataset obtained with vertical geophones and
vertically-incident seismic source was then analysed.

The adopted methodology has proved to furnish good results able
to depict the subsurface conditions of the investigated area in terms of
Vs and Vp vertical profiling.

It is worth noticing that Vp and Vs need careful evaluation with
respect to water content. The relationship between water saturation
and shear-wave velocity is quite complex but as a general rule an
increase in water content should reflect in a decrease in Vs (e.g.
Dvorkin, 2008), while for near-surface unconsolidated sediments
compressional-wave velocity typically increases.

The proposed inversion scheme is able to cope with this aspect
(variation in the Vp/Vs ratio due to variation in water content). Changes
due to variations in water saturation in a homogeneous layer are in fact
modelled by using two layers with different Poisson moduli.

The application of the presented inversion scheme in a real case
has shown that the proposed approach can be actually successfully
applied in challenging subsurface conditions.

For the analysed field dataset, if dispersion curve and refraction
travel times were analysed separately, an incoherent 3-layer model
would have been determined. A more complex 4-layer hypothesis was
proficiently handled in the frame of the proposed MOEA inversion
scheme and led to the determination of a subsurface model where a
low-velocity layer below the uppermost one is present.
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